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Abstract

This paper shows fundamentals and applications of the parametric fuzzy cerebellar model articulation controller (P-FCMAC)
network. It resembles a neural structure that derived from the Albus CMAC and Takagi–Sugeno–Kang parametric fuzzy inference
systems. In this paper, a novel hybrid learning which consists of self-clustering algorithm (SCA) and modified genetic algorithms
(MGA) is proposed for solving the classification problems. The SCA scheme is a fast, one-pass algorithm for a dynamic estimation
of the number of hypercube cells in an input data space. The clustering technique does not require prior knowledge such as the number
of clusters present in a data set. The number of fuzzy hypercube cells and the adjustable parameters in P-FCMAC are designed by the
MGA. The MGA uses the sequential-search based efficient generation (SSEG) method to generate an initial population to determine the
most efficient mutation points. Illustrative examples were conducted to show the performance and applicability of the proposed model.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1975, the cerebellar model articulation controller
(CMAC) developed by Albus (1975a) and Albus (1975b),
is an artificial neural network inspired by the cerebellum.
The CMAC network (Albus, 1975a) is a local network
implies for a given input vector. The input space is quan-
tized into discrete states as well as larger size overlapped
areas called hypercubes. Each hypercube covers many
discrete states and is assigned a memory cell that stores
information for it. Only a few of the networks nodes (or
hypercube cells) will be active and will effectively contribute
to the corresponding network output. The basic idea of the
CMAC network is to store learned data into overlapping
regions in a way that the data can easily be recalled but
use less storage space. Furthermore, the action of storing
weight information in the CMAC network is similar to that
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of the cerebellum in humans. Because of the simple struc-
ture and fast learning property of the CMAC network, it
has been successfully applied in many fields, such as robot
control (Miller, Hewes, Glanz, & Graft, 1990), signal
processing (Kolcz & Allinson, 1994), pattern recognition
(Glanz, Miller, & Graft, 1991), image coding (Iiguni,
1996), and equalization (Reay, 1995). The advantages of
the CMAC network are summarized as follows: a simple
local neural network that can treat as a lookup table, fast
learning speed, high convergence rate, good generalization
capability, and ease of implementation by hardware, etc.
However, there are two major limitations for the Albus’
CMAC network: difficult in selecting the memory structure
parameters and enormous memory size requirement for
solving high-dimensional problems. The first problem that
is while the conventional CMAC network has a constant
value assigned to each hypercube, the data for a quantized
state are constant and the derivative information is not pre-
served. This problem can be solved by using non-constant
differentiable basis functions, such as spline functions by
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Lane, Handelman, and Gelfand (1992), and fuzzy member-
ship functions by Jou (1992), etc. In this paper, we use
mathematical equations to describe the CMAC network
with Gaussian basis functions as receptive field functions.
The second problem, the choice of clustering technique in
the CMAC network is an important consideration. This
is due to the use of partition-based clustering techniques,
such as fuzzy C-means (FCM) (Hung et al., 2001), linear
vector quantization (LVQ) (He, Liu, & Palm, 1995), fuzzy
Kohonen partitioning (FKP), and pseudo FKP (Ang,
Quek, & Pasquier, 2003), to perform cluster analysis. How-
ever, such clustering techniques require prior knowledge
such as the number of clusters present in a data set. To
solve the above problem, online-based cluster techniques
were proposed (Kasabov & Song, 2002; Tung & Quek,
2002). But there are still problems with these methods; that
is, the clustering methods (Kasabov & Song, 2002; Tung &
Quek, 2002) only consider the total variations of the mean
and deviation in all dimensions per input. This is because
the cluster numbers increase quickly. In this paper, we pro-
pose a new self-clustering algorithm (SCA) to overcome the
above-mentioned problem.

Fuzzy modeling (Lin & Lee, 1996) has been recognized
as a powerful tool which can facilitate the effective develop-
ment of models by combining information from different
sources. A fuzzy modeling consists of a set of fuzzy IF–
THEN rules that describe the input–output mapping rela-
tionship of the network and learning algorithms from area
of artificial neural networks. It can be better used to
explain solutions to users than completely black-box mod-
els such as neural networks. The antecedents of fuzzy rules
partition the input space into a number of linguistic term
sets while the consequent constituent can be chosen as
Mamdani-type fuzzy model (Wang & Mendel, 1992) which
is a singleton value, or TSK-type fuzzy model which is a
function of linear combination of input variables (Jang,
1993; Juang & Lin, 1998; Sugeno & Kang, 1988; Takagi
& Sugeno, 1985). Many researchers (Jang, 1993; Juang &
Lin, 1998) have been shown that if a TSK-type fuzzy model
is used, the network size and learning accuracy is superior
to those of Mamdani-type fuzzy model. Recently, several
authors (Chen, Cooley, & Zhang, 1999; Jishuang, Chao,
& Zhengzhi, 2003) adopt backpropagation (BP) learning
algorithm to adjust parameters. Using the steepest descent
technique in BP training could minimize the error function,
allowing the algorithm to reach the local minima very fast
while never finding a global solution. Besides, BP training
performance depends on the initial system parameter val-
ues. For different network topologies one must derive
new mathematical expressions for each network layer.
Considering the aforementioned disadvantages, subopti-
mal performance occurs even for a suitable fuzzy model
topology. The techniques capable of training the model
parameters and finding the global solution while optimiz-
ing the overall structure are needed. In this respect, genetic
algorithms (GAs) appear to be better candidates. Several
GAs based approaches have appeared in the literatures
(Homaifar & McCormick, 1995; Juang, 2002; Karr, 1991;
Kusumoputo, Irwanto, & Jatmiko, 2002; Lee & Takagi,
1993). Karr (1991) used a GA to generate membership
functions for a fuzzy system. In Karr’s work, a user needs
to declare an exhaustive rule set and then use GAs to
design only the membership functions. In Kusumoputo
et al. (2002) and Homaifar and McCormick (1995), a fuzzy
controller design method that used GAs to find the mem-
bership functions and the rule sets simultaneously was pro-
posed. In Lee and Takagi (1993), a GA was used to tune
the consequent parameters of TSK-type fuzzy rules (Tak-
agi & Sugeno, 1985), as well as the membership functions
in the precondition parts. Hence, we propose a new net-
work structure which is mainly derived from the CMAC
algorithm and Takagi–Sugeno–Kang (TSK) parametric
fuzzy inference systems (Merz & Freisleben, 2000; Takagi
& Sugeno, 1985), and a novel hybrid learning algorithm.
A novel hybrid learning algorithm, which consists of
SCA and MGA, is proposed for solving the classification
problems. The MGA uses the sequential-search based effi-
cient generation (SSEG) method to generate an initial pop-
ulation to determine the most efficient mutation points.
The advantages of the proposed MGA are summarized
as follows: (1) It can reduce the population sizes to a min-
imum size (i.e., only four population sizes); (2) The best
chromosome will be chosen to perform the mutation oper-
ator in every generation; (3) The MGA method converges
more quickly than existing traditional genetic methods.
The two examples given confirm the effectiveness of the
proposed model.

The rest of this paper is organized as follows. The
fundamentals of the P-FCMAC network are detailed in
Section 2. Section 3 presents a novel hybrid learning algo-
rithm for the P-FCMAC network. The various applica-
tions of the proposed network are shown in the Section
4. The conclusions are summarized in the last section.

2. The parametric fuzzy CMAC (P-FCMAC) network

In this section, we propose a new parametric fuzzy
cerebellar model articulation controller (P-FCMAC)
network. The architecture of the P-FCMAC network is
illustrated in Fig. 1, which consists of the input space par-
tition, association memory selection, and defuzzification.
The P-FCMAC network like the conventional CMAC net-
work that also approximates a nonlinear function y = f(x)
by using two primary mappings:

S : X ) A ð1Þ
P : A) D ð2Þ
where X is a ND-dimensional input space, A is a NA-dimen-
sional association space, and D is a one-dimensional out-
put space. These two mappings are realized by fuzzy
operations. The function S(x) also maps each point x in
the input space onto an association vector a = S(x) 2 A
that has NL nonzero elements (NL < NA). Different from
conventional CMAC network, the association vector
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Fig. 1. The architecture of the P-FCMAC network.
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a ¼ ða1; a2; . . . ; aNAÞ, where 0 6 a 6 1 for all components in
a, is derived from the composition of the receptive field
functions and sensory inputs. Another, several hypercubes
is addressed by the input state x that hypercube value is
calculated by product operation through the strength of
the receptive field functions for each input state. In the
P-FCMAC network, we use Gaussian basis function as
the receptive field functions and the linear parametric equa-
tion of the network input variance as the TSK-type output
for learning. Some learned information is stored in the
receptive field functions and TSK-type output vectors. A
one-dimension Gaussian basis function can be given as
follows:

lðxÞ ¼ e�ððx�mÞ=rÞ2 ð3Þ
where x represents the specific input state, m represents the
corresponding center, and r represents the corresponding
variance. Let us consider a ND-dimensional problem. A
Gaussian basis function with ND dimensions is given as
follows:

aj ¼
YND

i¼1

e�ððxi�mijÞ=rijÞ2 ð4Þ

where
Q

represents the product operation, the aj represents
the jth element of the association vector, xi represents the
input value of the ith dimension for a specific input state
x, mij represents the center of the receptive field functions,
rij represents the variance of the receptive field functions,
and ND represents the number of the receptive field func-
tions for each input state. The function P(a) computes a
scalar output y by projecting the association vector onto
a vector of adjustable receptive field functions. Each
element of the receptive field functions is inferred to pro-
duce a partial fuzzy output by applying the value of its cor-
responding association vector as input matching degree.
The partial fuzzy output is defuzzified into a scalar output
y by the centroid of area (COA) approach. Then the actual
output y is derived as follows:

y ¼
PNL

j¼1aj a0j þ
PND

i¼1aijxi

� �
PNL

j¼1aj

ð5Þ

The jth element of the TSK-type output vectors is de-
scribed as follows:

a0j þ
XND

i¼1

aijxi ð6Þ

where aoj and aij denote the scalar value, ND denotes the
number of the input dimensions, NL denotes the number
of hypercube cells, and xi denotes the ith input dimension.
Based on the above structure, a novel hybrid learning algo-
rithm will be proposed to determine the proper network
structure and its adjustable parameters.
3. A novel hybrid learning algorithm for P-FCMAC network

A novel hybrid learning algorithm, which consists of an
input space partition scheme and a parameter learning
scheme, is developed for constructing the P-FCMAC net-
work. First, the input space partition scheme is used to
determine proper input space partitioning and to find the
mean and the width of each receptive field function. The
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input space partition is based on the self-clustering
algorithm (SCA) to appropriately determine the various
distributions of the input training data. Second, the param-
eter learning scheme is based on modified genetic algorithm
(MGA). The MGA is used to adjust the receptive field
functions and the TSK-type output vector. According to
the requirements of the system, these parameters will be
given proper values to represent the memory information.
For the initial system, the values of the tuning parameters
a0j and aij of the element of the TSK-type output vector are
generated randomly, and the m and r of receptive field
functions are generated by the proposed SCA.

3.1. An input space partition scheme

The receptive field functions can map input patterns.
Hence, the discriminative ability of these new features is
determined by the centers of the receptive field functions.
To achieve good classification, centers are best selected
based on their ability to provide large class separation.

An input space partition scheme, called self-clustering
algorithm (SCA), is proposed to implement scatter parti-
tioning of the input space. Without any optimization, the
SCA is a fast, one-pass algorithm for a dynamic estimation
of the number of hypercube cells in a set of data, and for
finding the current centers of hypercube cells in the input
data space. It is a distance-based connectionist clustering
algorithm. In any hypercube cell, the maximum distance
between an example point and the hypercube cell center
is less than a threshold value, which has been set as a clus-
tering parameter and which would affect the number of
hypercube cells to be estimated.

In the clustering process, the data examples come from a
data stream, and the process starts with an empty set of
hypercube cells. When a new hypercube cell is created,
the hypercube cell center, C, is defined, and its hypercube
cell distance and hypercube cell width, Dc and Wd, is ini-
tially set to zero. When more samples are presented one
after another, some created hypercube cells will be updated
by changing the positions of their centers and increasing
the hypercube cell distances and hypercube cell width.
Which hypercube cell will be updated and how much it will
be changed depends on the position of the current example
in the input space. A hypercube cell will not be updated any
more when its hypercube cell distance, Dc, reaches the
value that is equal to the threshold value Dthr. The detail
process is described in (Lin, Chen, & Lee, 2004).

3.2. The parameter learning scheme

In the parameter learning scheme, there are four param-
eters need to be tuned, i.e. mij, rij, a0j, and aij. In this paper,
we propose the MGA to tune the free parameters. The
MGA is unlike traditional genetic algorithm which an ini-
tial population is generated randomly within a fixed range.
It uses the sequential-search based efficient generation
(SSEG) method to generate an initial population and to
decide on efficient mutation points. The population size
will be reduced to a minimum size and the best chromo-
some will be chosen to perform the mutation operator in
every generation. Like traditional genetic algorithm, the
proposed MGA consists of three major operators: repro-
duction, crossover, and mutation. Before the details of
these three operators are explained, coding, initialization
are discussed. The coding step, we divide a chromosome
into two parts. The first part of the chromosome gives
the parameters of the nonlinear input mapping aR, and
the second part of the chromosome gives the consequent
parameters of the TSK-type output AR (i.e., the coefficients
of the linear combination). The initialization step assigns
the population values before the evolution process begins.
The whole learning process is described step by step below.

3.2.1. Coding step

The first step in MGA is to code a P-FCMAC model
into a chromosome. Fig. 2 shows an example of a P-
FCMAC model coded into a chromosome, where mij and
rij represent a Gaussian membership function with mean
and deviation with ith dimension and jth hypercube cell
(i.e., i = 1 . . . n,j = 1 . . . R, R represents the number of
hypercube cell), aoj and aij denote the scalar value of the
TSK-type output vectors, respectively.

3.2.2. Initialization step

Before the P-FCMAC model is designed, individuals
forming an initial population should be generated. Unlike
traditional genetic algorithm, an initial population is gener-
ated randomly within a fixed range. In MGA, the initial
population is generated using the SSEG method to ensure
that chromosomes with good genes can be generated. The
detailed steps of the initialization method are described
as follows:

• Step 0: The first chromosome that represents a
P-FCMAC model will be generated initially. The following
formulations show how to generate the first chromosome:

Deviation : Chrj½p� ¼ random½rmin; rmax�
where p ¼ 2; 4; 6; . . . ; 2 � n� 1 ð7Þ

Mean : Chrj½p� ¼ random½mmin;mmax�
where p ¼ 1; 3; 5; . . . ; 2 � n� 1 ð8Þ

Weight : Chrj½p� ¼ random½amin; amax�
where p ¼ 2 � nþ 1; . . . ; 2 � nþ ð1þ nÞ ð9Þ

where Chrj means chromosome, prepresents the pth gene in
a Chrj; j represents jth hypercube cell and [rmin,rmax],
[mmin,mmax] and [amin,amax] represent the rang that we pre-
defined to generate the chromosomes.

• Step 1: To generate the other chromosomes, we pro-
pose the SSEG method to generate the new chromosomes.
The search algorithm of SSEG is similar to the local search
procedure in (Merz & Freisleben, 2000). In SSEG, every
gene in the previous chromosomes is selected using a
sequential search and the gene’s value is updated to evalu-



Fig. 2. Coding a P-FCMAC model into a chromosome in MGA method.

Fig. 3. The pseudo code for the SSEG method.
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ate the performance based on the fitness value. The details
of the SSEG method are as follows:

(a) Sequentially search for a gene in the previous
chromosome.

(b) Update the chosen gene in (a) according to the fol-
lowing formula:

Chrj½p�

¼
Chrj½p�þDðfitness value;dmax�Chrj½p�Þ; if g> 0:5

Chrj½p��Dðfitness value;�Chrj½p�dminÞ; if g< 0:5

where p¼ 2;4;6; . . . ;2�n

8><
>:

ð10Þ
Chrj½p�

¼
Chrj½p�þDðfitness value;mmax�Chrj½p�Þ; if g> 0:5

Chrj½p��Dðfitness value;�Chrj½p�mminÞ; if g< 0:5

where p¼ 1;3;5; . . . ;2�n�1

8><
>:

ð11Þ
Chrj½p�

¼
Chrj½p�þDðfitness value;amax�Chrj½p�Þ; if g> 0:5

Chrj½p��Dðfitness value;�Chrj½p�aminÞ; if g< 0:5

where p¼ 2�nþ1; . . . ;2�nþð1þnÞ

8><
>:

ð12Þ

where

Dðfitness value;vÞ ¼ v�k�ð1=fitness valueÞk ð13Þ

where g, k 2 [0,1] are the random values; fitness_value is
the fitness computed using Eq. (14); p represents the pth
gene in a chromosome; and j represents jth hypercube cell,
respectively. The function D(fitness_value,v)returns a va-
lue, such that D(fitness_value,v) comes close to 0 as fit-
ness_value increases. This property causes the mutation
operator to search the space uniformly during the initial
stage (when fitness_value is small) and locally during the la-
ter stages, thus increasing the probability of generating
children closer to its successor than a random choice and
reducing the number of generations.

If the new gene that is generated from (b) can improve
the fitness value, then replace the old gene with the new
gene in the chromosome. If not, recover the old gene in
the chromosome. After this, go to (a) until every gene is
selected. The pseudo code for the SSEG method is listed
in Fig. 3. The Chrk,j represents the kth chromosome and
jth hypercube cell in a neural fuzzy system. And Nf denote
the size of the population, fitness(Chrk,j_new) is a fitness
function by Eq. (14) using the kth new chromosome.

• Step 2: If no genes are selected to improve the fitness
value in step 1, than the new chromosome will be generated
according to step 0. After the new chromosome is gener-
ated, the initialization method returns to step 1 until the
total number of chromosomes is generated.

In this paper, the fitness value is designed according the
follow formulation:

Fitness Value ¼ 1� ðEðy; �yÞ=NÞ ð14Þ

where Eðy; �yÞ ¼
XN

i¼1

jyi � �yij ð15Þ

where yi represents the true value of the ith output, �yi repre-
sents the predicted value, Eð�y; �yÞ is a error function and N

represents a numbers of the training data of each generation.

3.2.3. Reproduction step
Reproduction is a process in which individual strings are

copied according to their fitness value. In this study, we use



Fig. 4. Efficient mutation operation in three mutation points with jth hypercube cell.

Table 1
The initial parameters before training

Parameters Value

Population size 4
Crossover rate 0.5
Coding type Real number
[rmin,rmax] [0,1]
[mmin,mmax] [0,1]
[amin,amax] [�20,20]

Fig. 5. The training curves of the three methods.
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the roulette-wheel selection method (Cordon, Herrera,
Hoffmann, & Magdalena, 2001) – a simulated roulette is
spun–for this reproduction process. The best performing
individuals in the top half of the population (Juang, Lin,
& Lin, 2000) advances to the next generation. The other half
is generated to perform crossover and mutation operations
on individuals in the top half of the parent generation.

3.2.4. Crossover step
Reproduction directs the search toward the best existing

individuals but does not create any new individuals. In nat-
ure, an offspring has two parents and inherits genes from
both. The main operator working on the parents is the
crossover operator, the operation of which occurred for a
selected pair with a crossover rate that was set to 0.5 in this
study. The first step is to select the individuals from the
population for the crossover. Tournament selection (Cor-
don et al., 2001) is used to select the top-half of the best
performing individuals (Juang et al., 2000). The individuals
are crossed and separated using a two-point crossover that
is the new individuals are created by exchanging the site’s
values between the selected sites of parents’ individual.
After this operation, the individuals with poor perfor-
mances are replaced by the newly produced offspring.

3.2.5. Mutation step

Although reproduction and crossover will produce many
new strings, they do not introduce any new information to
the population at the site of an individual. Mutation is an
operator that randomly alters the allele of a gene. In this
paper we propose using efficient mutation, which is unlike
the traditional mutation, to mutate the chromosomes. In
MGA, we perform efficient mutation using the best fitness
value chromosome of every generation. And we use SSEG
to decide on the mutation points. When the mutation points
are selected, we use Eqs. (10)–(13) to update the genes. The
efficient mutation of an individual is shown in Fig. 4.

The aforementioned steps are done repeatedly and
stopped when the predetermined condition is achieved.

4. Illustrative examples

In this section, we compare the performance of the
P-FCMAC network with other some existing models on
classification applications. The first example is the face
detection problem. The second example is the Wisconsin
breast cancer diagnostic data. The initial parameters are
given in Table 1 before training.

4.1. Example 1: the face detection problem

Face detection from images is a key problem in human
computer interaction studies and pattern recognition
research. In this paper, we use P-FCMAC to solve the face
detection in color image problems. Color image of pre-pro-
cessing contain three major modules: (1) lighting compen-
sation; (2) color segment; (3) skin tone detection.
Lighting compensation uses reference white technology to
adjust the original hue of color image. We chose the



Table 2
Performance comparison of some existing models

MGA TSE (Juang et al., 2000) TGA (Karr, 1991) Neural networks (Lin & Lee, 1996)

Training data 6000 6000 6000 6000

Accuracy rate (training) 96.9% 80.5% 71.6% 85.35%
Error (training) 186 1169 1701 897

Accuracy rate (testing) 92.3% 71.0% 63.2% 66.12%
Error (testing) 466 1740 2210 2033

Iterations/generations 100 100 100 2500

Fig. 6. Original of California Institute of Technology face database.
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YCbCr color space to substitute RGB color space for color
segment. Because of the YCbCr color space has good sep-
aration between the luminance and chrominance
information.

We exploited California Institute of Technology face
database, via http://www.vision.caltech.edu/Image_Data-
sets/faces/, including 450 images, each of size 320 · 240
pixels, containing 27 different people and a variety of light-
ing, backgrounds and facial expressions. This experiment
used three input dimensions (Y, Cb and Cr), and there were
6000 training data and 6000 test data. Further, through the
network generated binary outputs (1/0 for skin/non-skin).
Fig. 7. Test result of thr
The initial threshold value Dthr in the SCM is 0.6. After
the SCM clustering process, there are four hypercube cells
generated. In this example, the performance of the MGA
method was compared with the traditional symbiotic evo-
lution (TSE) (Juang et al., 2000) and traditional genetic
algorithm (TGA) (Karr, 1991). Fig. 5 shows the training
curves for the three methods. We could find the proposed
MGA method converged more quickly than some GAs
methods (Juang et al., 2000; Karr, 1991). The performance
of the MGA method was also compared with neural net-
work (Lin & Lee, 1996). It indicates includes the training
and testing accuracy rates, training and testing errors,
ee dimension input.

http://www.vision.caltech.edu/Image_Datasets/faces/
http://www.vision.caltech.edu/Image_Datasets/faces/


Table 3
Experiment results for independent runs

Experiment # Iteration 1 2 3 4 5 Average

Accuracy (%) for TGA 1000 93.54 93.54 94.13 89.73 91.49 92.49
Accuracy (%) for MGA 300 97.36 97.36 97.07 97.95 97.07 97.36

Table 4
Experimental results for Wisconsin breast cancer diagnostic data

Models Average recognition rate (%)

MSC (Lovel & Bradley, 1996) 94.9
NEFCLASS (Nauck & Kruse, 1997) 92.7
NNFS (Setiono & Liu, 1997) 93.94
FEBFC (Lee et al., 2001) 94.67
SANFIS (Wang & George Lee, 2002) 96.07
P-FCMAC 97.36
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and the iterations. The comparison results are tabulated in
Table 2.

The California Institute of Technology face database
consists of major of images in involving complex back-
grounds employing diverse lighting. Hence, from the com-
parison data listed in Table 2, we see that the testing
accuracy rate in the traditional neural network is about
85.35% (this is from 2500 iterations). The TSE testing accu-
racy rate was about 71.0%. The TGA testing accuracy rate
was about 63.2%, and the MGA was about 92.3%. Our
method shows a better testing accuracy rate performance
than other methods. This demonstrates that the California
Institute of Technology face database is more complex
leading to an accuracy rate decrease. However, the MGA
method maintained a superior accuracy rate. We utilize
color images from the California Institute of Technology
face database are shown in Fig. 6. The output results using
MGA method are shown in Fig. 7. It demonstrates that
our approach accurately determines the facial region.
4.2. Example 2: the Wisconsin breast cancer diagnostic data

The Wisconsin Breast Cancer Diagnostic data set are
available from the University of California, Irvine, via an
anonymous ftp://ftp.ics.uci.edu/pub/machine-learning-
databases. It contains 699 patterns distributed into two
output classes, benign and malignant. Each pattern con-
sists of nine input features: clump thickness, uniformity
of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, nor-
mal nucleoli, and mitoses. There are 458 patterns in the
benign class and the other 241 patterns are in the malignant
class. Since 16 patterns containing missed values, we use
683 patterns to evaluate the performance. To demarcate
the output y of the P-FCMAC model using the following
rules:

Class ¼
Benign; if y < 0

Malignant; if 0 6 y

�
ð16Þ
A half of 683 patterns were used as the training set
which were randomly chosen, and the remaining patterns
were used as the testing set. We also repeated the experi-
ment on five different training-testing data sets that are
obtained via a random process from the original Wisconsin
Breast Cancer Diagnostic data. The initial threshold value
Dthr in the SCA is 24.2. After the SCA clustering process,
there are four hypercube cells generated. Table 3 shows
the classification accuracy rate of five different training-
testing data for traditional genetic algorithm (TGA) (Karr,
1991) and MGA. The average classification accuracy rate
using MGA method is 97.36%. We also compare the per-
formance of our model with some existing methods (Lee,
Chen, Chen, & Jou, 2001; Lovel & Bradley, 1996; Nauck
& Kruse, 1997; Setiono & Liu, 1997; Wang & George
Lee, 2002). The comparison results are tabulated in Table
4. The results show that the proposed model has higher
average classification accuracy rate than other methods.
5. Conclusion

In this paper, a new parametric fuzzy CMAC
(P-FCMAC) network was proposed for classification
applications. The proposed model uses a non-constant dif-
ferentiable basis function, i.e. Gaussian basis function, to
model the hypercube structure and the linear parametric
equation of the TSK-type output that can proper to
express the various input state. The proposed a novel
hybrid algorithm consists of the self-clustering algorithm
(SCA) to perform input space partition and the modified
genetic algorithm (MGA) to perform parameter learning.
The advantages of the proposed P-FCMAC network are
summarized as follows: (1) it implements scatter partition-
ing of the input space dynamically; (2) it can keep a smaller
rms error; and (3) it has much lower memory requirement
than conventional CMAC network. The two examples
given confirm the effectiveness of the proposed model.
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